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13.1 Introduction

In the last couple of decades, there has been a tremendous growth in using randomness as
a powerful source of computation. Incorporating randomness in computation often results
in a much simpler and more easily implementable algorithms. A number of problem do-
mains, ranging from sorting to stringology, from graph theory to computational geometry,
from parallel processing system to ubiquitous internet, have benefited from randomization
in terms of newer and elegant algorithms. In this chapter we shall see how randomness
can be used as a powerful tool for designing simple and efficient data structures. Solving a
real-life problem often involves manipulating complex data objects by variety of operations.
We use abstraction to arrive at a mathematical model that represents the real-life objects
and convert the real-life problem into a computational problem working on the mathe-
matical entities specified by the model. Specifically, we define Abstract Data Type (ADT)
as a mathematical model together with a set of operations defined on the entities of the
model. Thus, an algorithm for a computational problem will be expressed in terms of the
steps involving the corresponding ADT operations. In order to arrive at a computer based
implementation of the algorithm, we need to proceed further taking a closer look at the
possibilities of implementing the ADTs. As programming languages support only a very
small number of built-in types, any ADT that is not a built-in type must be represented
in terms of the elements from built-in type and this is where the data structure plays a
critical role. One major goal in the design of data structure is to render the operations of
the ADT as efficient as possible. Traditionally, data structures were designed to minimize
the worst-case costs of the ADT operations. When the worst-case efficient data structures
turn out to be too complex and cumbersome to implement, we naturally explore alternative
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design goals. In one of such design goals, we seek to minimize the total cost of a sequence
of operations as opposed to the cost of individual operations. Such data structures are said
to be designed for minimizing the amortized costs of operations. Randomization provides
yet another avenue for exploration. Here, the goal will be to limit the expected costs of
operations and ensure that costs do not exceed certain threshold limits with overwhelming
probability.

In this chapter we discuss about the Dictionary ADT which deals with sets whose elements
are drawn from a fixed universe U and supports operations such as insert, delete and search.
Formally, we assume a linearly ordered universal set U and for the sake of concreteness we
assume U to be the set of all integers. At any time of computation, the Dictionary deals only
with a finite subset of U . We shall further make a simplifying assumption that we deal only
with sets with distinct values. That is, we never handle a multiset in our structure, though,
with minor modifications, our structures can be adjusted to handle multisets containing
multiple copies of some elements. With these remarks, we are ready for the specification of
the Dictionary ADT.

DEFINITION 13.1 [Dictionary ADT] Let U be a linearly ordered universal set and S
denote a finite subset of U . The Dictionary ADT, defined on the class of finite subsets of
U , supports the following operations.
Insert (x, S) : For an x ∈ U, S ⊂ U , generate the set S

⋃
{x}.

Delete (x, S) : For an x ∈ U, S ⊂ U , generate the set S − {x}.
Search (x, S) : For an x ∈ U, S ⊂ U , return TRUE if x ∈ S and return FALSE if x �∈ S.

Remark : When the universal set is evident in a context, we will not explicitly mention
it in the discussions. Notice that we work with sets and not multisets. Thus, Insert (x,S)
does not produce new set when x is in the set already. Similarly Delete (x, S) does not
produce a new set when x �∈ S.

Due to its fundamental importance in a host of applications ranging from compiler design
to data bases, extensive studies have been done in the design of data structures for dictio-
naries.

which aim to minimize the disk access. All these structures, however, are deterministic. In

Specifically

• We describe a data structure called Skip Lists and present a comprehensive prob-
abilistic analysis of its performance.

• We discuss an interesting randomized variation of a search tree called Randomized
Binary Search Tree and compare and contrast the same with other competing
structures.
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13.2 Preliminaries

In this section we collect some basic definitions, concepts and the results on randomized
computations and probability theory. We have collected only the materials needed for the
topics discussed in this chapter. For a more comprehensive treatment of randomized algo-

13.2.1 Randomized Algorithms

Every computational step in an execution of a deterministic algorithm is uniquely deter-
mined by the set of all steps executed prior to this step. However, in a randomized algorithm,
the choice of the next step may not be entirely determined by steps executed previously;
the choice of next step might depend on the outcome of a random number generator. Thus,
several execution sequences are possible even for the same input. Specifically, when a ran-
domized algorithm is executed several times, even on the same input, the running time may
vary from one execution to another. In fact, the running time is a random variable depend-
ing on the random choices made during the execution of the algorithm. When the running
time of an algorithm is a random variable, the traditional worst case complexity measure
becomes inappropriate. In fact, the quality of a randomized algorithm is judged from the
statistical properties of the random variable representing the running time. Specifically, we
might ask for bounds for the expected running time and bounds beyond which the running
time may exceed only with negligible probability. In other words, for the randomized algo-
rithms, there is no bad input; we may perhaps have an unlucky execution.
The type of randomized algorithms that we discuss in this chapter is called Las Vegas type
algorithms. A Las Vegas algorithm always terminates with a correct answer although the
running time may be a random variable exhibiting wide variations. There is another im-
portant class of randomized algorithms, called Monte Carlo algorithms, which have fixed
running time but the output may be erroneous. We will not deal with Monte Carlo algo-
rithms as they are not really appropriate for basic building blocks such as data structures.
We shall now define the notion of efficiency and complexity measures for Las Vegas type
randomized algorithms.

Since the running time of a Las Vegas randomized algorithm on any given input is a
random variable, besides determining the expected running time it is desirable to show
that the running time does not exceed certain threshold value with very high probability.
Such threshold values are called high probability bounds or high confidence bounds. As is
customary in algorithmics, we express the estimation of the expected bound or the high-
probability bound as a function of the size of the input. We interpret an execution of a
Las Vegas algorithm as a failure if the running time of the execution exceeds the expected
running time or the high-confidence bound.

DEFINITION 13.2 [Confidence Bounds] Let α, β and c be positive constants. A ran-
domized algorithm A requires resource bound f(n) with

1. n−exponential probability or very high probability, if for any input of size n, the
amount of the resource used by A is at most αf(n) with probability 1−O(β−n),
β > 1. In this case f(n) is called a very high confidence bound.

2. n − polynomial probability or high probability, if for any input of size n, the
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amount of the resource used by A is at most αf(n) with probability 1−O(n−c).
In this case f(n) is called a high confidence bound.

3. n− log probability or very good probability, if for any input of size n, the amount
of the resource used by A is at most αf(n) with probability 1−O((log n)−c). In
this case f(n) is called a very good confidence bound.

4. high− constant probability, if for any input of size n, the amount of the resource
used by A is at most αf(n) with probability 1 − O(β−α), β > 1.

The practical significance of this definition can be understood from the following discus-
sions. For instance, let A be a Las Vegas type algorithm with f(n) as a high confidence
bound for its running time. As noted before, the actual running time T (n) may vary from
one execution to another but the definition above implies that, for any execution, on any
input, Pr(T (n) > f(n)) = O(n−c). Even for modest values of n and c, this bound implies
an extreme rarity of failure. For instance, if n = 1000 and c = 4, we may conclude that
the chance that the running time of the algorithm A exceeding the threshold value is one
in zillion.

13.2.2 Basics of Probability Theory

We assume that the reader is familiar with basic notions such as sample space, event and
basic axioms of probability. We denote as Pr(E) the probability of the event E. Several
results follow immediately from the basic axioms, and some of them are listed in Lemma
13.1.

LEMMA 13.1 The following laws of probability must hold:

1. Pr(φ) = 0
2. Pr(Ec) = 1 − Pr(E)
3. Pr(E1) ≤ Pr(E2) if E1 ⊆ E2

4. Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) − Pr(E1 ∩ E2) ≤ Pr(E1) + Pr(E2)

Extending item 4 in Lemma 13.1 to countable unions yields the property known as sub
additivity. Also known as Boole’s Inequality, it is stated in Theorem 13.1.

THEOREM 13.1 [Boole’s Inequality] Pr(∪∞
i=1Ei) ≤

∑∞
i=1 Pr(Ei)

A probability distribution is said to be discrete if the sample space S is finite or countable.
If E = {e1, e2, ..., ek} is an event, Pr(E) =

∑k
i=1 Pr({ei}) because all elementary events

are mutually exclusive. If |S| = n and Pr({e}) = 1
n for every elementary event e in S, we

call the distribution a uniform distribution of S. In this case,

Pr(E) =
∑

e∈E

Pr(e)

=
∑

e∈E

1
n

= |E|/|S|
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which agrees with our intuitive and a well-known definition that probability is the ratio of
the favorable number of cases to the total number of cases, when all the elementary events
are equally likely to occur.

13.2.3 Conditional Probability

In several situations, the occurrence of an event may change the uncertainties in the oc-
currence of other events. For instance, insurance companies charge higher rates to various
categories of drivers, such as those who have been involved in traffic accidents, because the
probabilities of these drivers filing a claim is altered based on these additional factors.

DEFINITION 13.3 [Conditional Probability] The conditional probability of an event E1

given that another event E2 has occurred is defined by Pr(E1/E2) (“Pr(E1/E2)” is read
as “the probability of E1 given E2.”).

LEMMA 13.2 Pr(E1/E2) = Pr(E1∩E2)
Pr(E2)

, provided Pr(E2) �= 0.

Lemma 13.2 shows that the conditional probability of two events is easy to compute.
When two or more events do not influence each other, they are said to be independent. There
are several notions of independence when more than two events are involved. Formally,

DEFINITION 13.4 [Independence of two events] Two events are independent if Pr(E1 ∩
E2) = Pr(E1)Pr(E2), or equivalently, Pr(E1/E2) = Pr(E1).

DEFINITION 13.5 [Pairwise independence] Events E1, E2, . . . Ek are said to be pairwise
independent if Pr(Ei ∩ Ej) = Pr(Ei)Pr(Ej), 1 ≤ i �= j ≤ n.

Given a partition S1, . . . , Sk of the sample space S, the probability of an event E may be
expressed in terms of mutually exclusive events by using conditional probabilities. This is
known as the law of total probability in the conditional form.

LEMMA 13.3 [Law of total probability in the conditional form] For any partition S1, ..., Sk

of the sample space S, Pr(E) =
∑k

i=1 Pr(E/Si) Pr(Si).

The law of total probability in the conditional form is an extremely useful tool for cal-
culating the probabilities of events. In general, to calculate the probability of a complex
event E, we may attempt to find a partition S1, S2, . . . , Sk of S such that both Pr(E/Si)
and Pr(Si) are easy to calculate and then apply Lemma 13.3. Another important tool is
Bayes’ Rule.

THEOREM 13.2 [Bayes’ Rule] For events with non-zero probabilities,

1. Pr(E1/E2) = Pr(E2/E1)Pr(E1)
Pr(E2)

2. If S1, S2, ..., Sk is a partition, Pr(Si/E) = Pr(E/Si)Pr(Si)P
j=1 Pr(E/Sj)Pr(Sj)

© 2005 by Chapman & Hall/CRC
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Proof Part (1) is immediate by applying the definition of conditional probability; Part
(2) is immediate from Lemma 13.3.

Random Variables and Expectation

Most of the random phenomena are so complex that it is very difficult to obtain detailed
information about the outcome. Thus, we typically study one or two numerical parameters
that we associate with the outcomes. In other words, we focus our attention on certain
real-valued functions defined on the sample space.

DEFINITION 13.6 A random variable is a function from a sample space into the set of
real numbers. For a random variable X , R(X) denotes the range of the function X .

Having defined a random variable over a sample space, an event of interest may be
studied through the values taken by the random variables on the outcomes belonging to the
event. In order to facilitate such a study, we supplement the definition of a random variable
by specifying how the probability is assigned to (or distributed over) the values that the
random variable may assume. Although a rigorous study of random variables will require
a more subtle definition, we restrict our attention to the following simpler definitions that
are sufficient for our purposes.

A random variable X is a discrete random variable if its range R(X) is a finite or countable
set (of real numbers). This immediately implies that any random variable that is defined
over a finite or countable sample space is necessarily discrete. However, discrete random
variables may also be defined on uncountable sample spaces. For a random variable X , we
define its probability mass function (pmf) as follows:

DEFINITION 13.7 [Probability mass function] For a random variable X , the probability
mass function p(x) is defined as p(x) = Pr(X = x), ∀x ∈ R(X).

The probability mass function is also known as the probability density function. Certain
trivial properties are immediate, and are given in Lemma 13.4.

LEMMA 13.4 The probability mass function p(x) must satisfy

1. p(x) ≥ 0, ∀x ∈ R(X)
2.

∑
x∈R(X) p(x) = 1

Let X be a discrete random variable with probability mass function p(x) and range R(X).
The expectation of X (also known as the expected value or mean of X) is its average value.
Formally,

DEFINITION 13.8 [Expected value of a discrete random variable] The expected value
of a discrete random variable X with probability mass function p(x) is given by E(X) =
µX =

∑
x∈R(X) xp(x).

LEMMA 13.5 The expected value has the following properties:

1. E(cX) = cE(X) if c is a constant
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2. (Linearity of expectation) E(X +Y ) = E(X)+E(Y ), provided the expectations
of X and Y exist

Finally, a useful way of computing the expected value is given by Theorem 13.3.

THEOREM 13.3 If R(X) = {0, 1, 2, ...}, then E(X) =
∑∞

i=1 Pr(X ≥ i).

Proof

E(X) =
∞∑

i=0

iPr(X = i)

=
∞∑

i=0

i(Pr(X ≥ i) − Pr(X ≥ i + 1))

=
∞∑

i=1

Pr(X ≥ i)

13.2.4 Some Basic Distributions

Bernoulli Distribution

We have seen that a coin flip is an example of a random experiment and it has two possible
outcomes, called success and failure. Assume that success occurs with probability p and
that failure occurs with probability q = 1 − p. Such a coin is called p-biased coin. A
coin flip is also known as Bernoulli Trial, in honor of the mathematician who investigated
extensively the distributions that arise in a sequence of coin flips.

DEFINITION 13.9 A random variable X with range R(X) = {0, 1} and probability
mass function Pr(X = 1) = p, Pr(X = 0) = 1 − p is said to follow the Bernoulli Distribu-
tion. We also say that X is a Bernoulli random variable with parameter p.

Binomial Distribution

Let
(

n
k

)
denote the number of k-combinations of elements chosen from a set of n elements.

Recall that
(

n
k

)
= n!

k!(n−k)! and
(

n
0

)
= 1 since 0! = 1.

(
n
k

)
denotes the binomial

coefficients because they arise in the expansion of (a + b)n.
Define the random variable X to be the number of successes in n flips of a p-biased coin.

The variable X satisfies the binomial distribution. Specifically,

DEFINITION 13.10 [Binomial distribution] A random variable with range R(X) =
{0, 1, 2, . . . , n} and probability mass function

Pr(X = k) = b(k, n, p) =
(

n
k

)
pkqn−k, for k = 0, 1, . . . , n

satisfies the binomial distribution. The random variable X is called a binomial random
variable with parameters n and p.

© 2005 by Chapman & Hall/CRC
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THEOREM 13.4 For a binomial random variable X, with parameters n and p, E(X) =
np and V ar(X) = npq.

Geometric Distribution

Let X be a random variable X denoting the number of times we toss a p-biased coin until
we get a success. Then, X satisfies the geometric distribution. Specifically,

DEFINITION 13.11 [Geometric distribution] A random variable with range R(X) =
{1, 2, . . . ,∞} and probability mass function Pr(X = k) = qk−1p, for k = 1, 2, . . . ,∞
satisfies the geometric distribution. We also say that X is a geometric random variable with
parameter p.

The probability mass function is based on k−1 failures followed by a success in a sequence
of k independent trials. The mean and variance of a geometric distribution are easy to
compute.

THEOREM 13.5 For a geometrically distributed random variable X, E(X) = 1
p and

V ar(X) = q
p2 .

Negative Binomial distribution

Fix an integer n and define a random variable X denoting the number of flips of a p-
biased coin to obtain n successes. The variable X satisfies a negative binomial distribution.
Specifically,

DEFINITION 13.12 A random variable X with R(X) = {0, 1, 2, ...} and probability
mass function defined by

Pr(X = k) =
(

k − 1
n − 1

)
pnqk−n if k ≥ n

= 0 if 0 ≤ k < n (13.1)

is said to be a negative binomial random variable with parameters n and p.

Equation (13.1) follows because, in order for the nth success to occur in the kth flip there
should be n − 1 successes in the first k − 1 flips and the kth flip should also result in a
success.

DEFINITION 13.13 Given n identically distributed independent random variables
X1, X2, . . . , Xn, the sum

Sn = X1 + X2 + · · · + Xn

defines a new random variable. If n is a finite, fixed constant then Sn is known as the
deterministic sum of n random variables.

On the other hand, if n itself is a random variable, Sn is called a random sum.

THEOREM 13.6 Let X = X1 + X2 + · · · + Xn be a deterministic sum of n identical
independent random variables. Then

© 2005 by Chapman & Hall/CRC
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1. If Xi is a Bernoulli random variable with parameter p then X is a binomial
random variable with parameters n and p.

2. If Xi is a geometric random variable with parameter p, then X is a negative
binomial with parameters n and p.

3. If Xi is a (negative) binomial random variable with parameters r and p then X
is a (negative) binomial random variable with parameters nr and p.

Deterministic sums and random sums may have entirely different characteristics as the
following theorem shows.

THEOREM 13.7 Let X = X1 + · · · + XN be a random sum of N geometric random
variables with parameter p. Let N be a geometric random variable with parameter α. Then
X is a geometric random variable with parameter αp.

13.2.5 Tail Estimates

Recall that the running time of a Las Vegas type randomized algorithm is a random vari-
able and thus we are interested in the probability of the running time exceeding a certain
threshold value.

Typically we would like this probability to be very small so that the threshold value may
be taken as the figure of merit with high degree of confidence. Thus we often compute or
estimate quantities of the form Pr(X ≥ k) or Pr(X ≤ k) during the analysis of randomized
algorithms. Estimates for the quantities of the form Pr(X ≥ k) are known as tail estimates.
The next two theorems state some very useful tail estimates derived by Chernoff. These
bounds are popularly known as Chernoff bounds. For simple and elegant proofs of these
and other related bounds you may refer

THEOREM 13.8 Let X be a sum of n independent random variables Xi with R(Xi) ⊆
[0, 1]. Let E(X) = µ. Then,

Pr(X ≥ k) ≤
(µ

k

)k
(

n − µ

n − k

)n−k

for k > µ (13.2)

≤
(µ

k

)k

ek−µ for k > µ (13.3)

Pr(X ≥ (1 + ε)µ) ≤
[

eε

(1 + ε)(1+ε)

]µ

for ε ≥ 0 (13.4)

THEOREM 13.9 Let X be a sum of n independent random variables Xi with R(Xi) ⊆
[0, 1]. Let E(X) = µ. Then,

Pr(X ≤ k) ≤
(µ

k

)k
(

n − µ

n − k

)n−k

k < µ (13.5)

≤
(µ

k

)k

ek−µ k < µ (13.6)

Pr(X ≤ (1 − ε)µ) ≤ e−
µε2
2 , for ε ∈ (0, 1) (13.7)

© 2005 by Chapman & Hall/CRC
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Recall that a deterministic sum of several geometric variables results in a negative bino-
mial random variable. Hence, intuitively, we may note that only the upper tail is meaningful
for this distribution. The following well-known result relates the upper tail value of a neg-
ative binomial distribution to a lower tail value of a suitably defined binomial distribution.
Hence all the results derived for lower tail estimates of the binomial distribution can be used
to derive upper tail estimates for negative binomial distribution. This is a very important
result because finding bounds for the right tail of a negative binomial distribution directly
from its definition is very difficult.

THEOREM 13.10 Let X be a negative binomial random variable with parameters r and
p. Then, Pr(X > n) = Pr(Y < r) where Y is a binomial random variable with parameters
n and p.

13.3 Skip Lists

Linked list is the simplest of all dynamic data structures implementing a Dictionary. How-
ever, the complexity of Search operation is O(n) in a Linked list. Even the Insert and Delete
operations require O(n) time if we do not specify the exact position of the item in the list.
Skip List is a novel structure, where using randomness, we construct a number of progres-
sively smaller lists and maintain this collection in a clever way to provide a data structure
that is competitive to balanced tree structures. The main advantage offered by skip list
is that the codes implementing the dictionary operations are very simple and resemble list
operations. No complicated structural transformations such as rotations are done and yet
the expected time complexity of Dictionary operations on Skip Lists are quite comparable
to that of AVL trees or splay trees. Skip Lists are introduced by Pugh [6].

Throughout this section let S = {k1, k2, . . . , kn} be the set of keys and assume that
k1 < k2 < . . . < kn.

DEFINITION 13.14 Let S0, S1, S2, . . . , Sr be a collection of sets satisfying

S = S0 ⊇ S1 ⊇ S2 ⊇ · · · ⊃ Sr = φ

Then, we say that the collection S0, S1, S2, . . . , Sr defines a leveling with r levels on S. The
keys in Si are said to be in level i, 0 ≤ i ≤ r. The set S0 is called the base level for the
leveling scheme. Notice that there is exactly one empty level, namely Sr. The level number
l(k) of a key k ∈ S is defined by

l(k) = max{i | k ∈ Li}.

In other words, k ∈ S0, S1, S2, . . . , Sl(k) but k �∈ Sl(k)+1 · · ·Sr.

For an efficient implementation of the dictionary, instead of working with the current
set S of keys, we would rather work with a leveling of S. The items of Si will be put in
the increasing order in a linked list denoted by Li. We attach the special keys −∞ at the
beginning and +∞ at the end of each list Li as sentinels. In practice, −∞ is a key value
that is smaller than any key we consider in the application and +∞ denotes a key value
larger than all the possible keys. A leveling of S is implemented by maintaining all the lists

© 2005 by Chapman & Hall/CRC
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L0, L1, L2, . . . , Lr with some more additional links as shown in Figure 13.1. Specifically,
the box containing a key k in Li will have a pointer to the box containing k in Li−1. We
call such pointers descent pointers. The links connecting items of the same list are called
horizontal pointers. Let B be a pointer to a box in the skip list. We use the notations
Hnext[B], and Dnext[B], for the horizontal and descent pointers of the box pointed by B
respectively. The notation key[B] is used to denote the key stored in the box pointed by B.
The name of the skip list is nothing but a pointer to the box containing −∞ in the rth level
as shown in the figure. From the Figure 13.1 it is clear that Li has horizontal pointers that
skip over several intermediate elements of Li−1. That is why this data structure is called
the Skip List.
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FIGURE 13.1: A Skip List. The starred nodes are marked by Mark(86,SL).

How do we arrive at a leveling for a given set? We may construct Si+1 from Si in
a systematic, deterministic way. While this may not pose any problem for a static search
problem, it will be extremely cumbersome to implement the dynamic dictionary operations.
This is where randomness is helpful. To get Si+1 from Si, we do the following. For each
element k of Si toss a coin and include k in Si+1 iff we get success in the coin toss. If
the coin is p-biased, we expect | Si+1 | to be roughly equal to p | Si |. Starting from S,
we may repeatedly obtain sets corresponding to successive levels. Since the coin tosses are
independent, there is another useful, and equivalent way to look at our construction. For
each key k in S, keep tossing a coin until we get a failure. Let h be the number of successes
before the first failure. Then, we include k in h further levels treating S = S0 as the base
level. In other words, we include k in the sets S1, S2, . . . , Sh. This suggests us to define a
random variable Zi for each key ki ∈ S0 to be the number of times we toss a p-biased coin
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before we obtain a failure. Since Zi denotes the number of additional copies of ki in the
skip list, the value maximum{Zi : 1 ≤ i ≤ n} defines the highest nonempty level. Hence,
we have,

r = 1 + maximum{Zi : 1 ≤ i ≤ n} (13.8)
| SL | = n + Z1 + Z2 + · · · + Zn + 2r + 2 (13.9)

where r is the number of levels and | SL | is the number of boxes or the space complexity
measure of the Skip List. In the expression for | SL | we have added n to count the keys in
the base level and 2r + 2 counts the sentinel boxes containing +∞ and −∞ in each level.

13.4 Structural Properties of Skip Lists

13.4.1 Number of Levels in Skip List

Recall that r = 1 + maxi{Zi}. Notice that Zi ≥ k iff the coin tossed for ki gets a run of
at least k successes right from the beginning and this happens with probability pk. Since
r ≥ k iff at least one of Zi ≥ k − 1 , we easily get the following fact from Boole’s inequality

Pr(r ≥ k) ≤ npk−1

Choosing k = 4 log1/p n + 1, we immediately obtain a high confidence bound for the
number of levels. In fact,

Pr(r ≥ 4 logn + 1) ≤ nn−4

=
1
n3

(13.10)

We obtain an estimation for the expected value of r, using the formula stated in theorem
( 13.3) as follows:

E(r) =
∞∑

i=1

Pr(r ≥ i)

=
4 log n∑

i=1

Pr(r ≥ i) +
∑

i>4 log n

Pr(r ≥ i)

≤
4 log n∑

i=1

1 +
∞∑

i>4 log n

npi−1

= 4 log n + np4 log n(1 + p + p2 + · · · )

= 4 log n + n · 1
n4

· (1 − p)−1 if base of the log is 1/p

≤ 4 log n + 1 for sufficiently large n

Thus E(r) = O(log n)
Hence,

THEOREM 13.11 The expected number of levels in a skip list of n elements is O(log n).
In fact, the number is O(log n) with high probability.
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13.4.2 Space Complexity

Recall that the space complexity, | SL | is given by

| SL |= Z1 + Z2 + · · · + Zn + n + 2r + 2.

As we know that r = O(log n) with high probability, let us focus on the sum

Z = Z1 + Z2 + · · · + Zn.

Since Zi is a geometric random variable with parameter p, Z is a negative binomial
random variable by theorem 13.6.

Thus E(Z) = n
p = O(n).

We can in fact show that Z is O(n) with very high probability.
Now, from theorem (13.10) Pr(Z > 4n) = Pr(X < n) where X is a binomial distribution

with parameters 4n and p. We now assume that p = 1/2 just for the sake of simplicity in
arithmetic.

In the first Chernoff bound mentioned in theorem (13.9), replacing n, µ and k respectively
with 4n, 2n and n, we obtain,

Pr(X < n) ≤
(

2n

n

)n (
2n

3n

)3n

=
(

2 · 23

33

)n

=
(

16
27

)n

=
(

27
16

)−n

This implies that 4n is in fact a very high confidence bound for Z. Since | SL |= Z+n+2r+2,
we easily conclude that

THEOREM 13.12 The space complexity of a skip list for a set of size n is O(n) with
very high probability.

13.5 Dictionary Operations

We shall use a simple procedure called Mark in all the dictionary operations. The procedure
Mark takes an arbitrary value x as input and marks in each level the box containing the
largest key that is less than x. This property implies that insertion, deletion or search
should all be done next to the marked boxes. Let Mi(x) denote the box in the ith level
that is marked by the procedure call Mark(x, SL). Recall the convention used in the linked
structure that name of a box in a linked list is nothing but a pointer to that box. The keys
in the marked boxes Mi(x) satisfy the following condition :

key[Mi(x)] < x ≤ key[Hnext[Mi(x)]] for all 0 ≤ i ≤ r. (13.11)

The procedure Mark begins its computation at the box containing −∞ in level r. At any
current level, we traverse along the level using horizontal pointers until we find that the
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next box is containing a key larger or equal to x. When this happens, we mark the current
box and use the descent pointer to reach the next lower level and work at this level in the
same way.
nodes marked by the call Mark(86,SL).

Algorithm Mark(x,SL)
-- x is an arbitrary value.
-- r is the number of levels in the skip list SL.
1. Temp = SL.
2. For i = r down to 0 do

While (key[Hnext[Temp]] < x)
Temp = Hnext[Temp];

Mark the box pointed by Temp;
Temp = Dnext[Temp];

3. End.

We shall now outline how to use marked nodes for Dictionary operations. Let M0(x) be
the box in level 0 marked by Mark(x). It is clear that the box next to M0(x) will have x iff
x ∈ S. Hence our algorithm for Search is rather straight forward.

To insert an item in the Skip List, we begin by marking the Skip List with respect to the
value x to be inserted. We assume that x is not already in the Skip List. Once the marking
is done, inserting x is very easy. Obviously x is to be inserted next to the marked boxes.
But in how many levels we insert x? We determine the number of levels by tossing a coin
on behalf of x until we get a failure. If we get h successes, we would want x to be inserted
in all levels from 0 to h. If h ≥ r, we simply insert x at all the existing levels and create a
new level consisting of only −∞ and +∞ that corresponds to the empty set. The insertion
will be done starting from the base level. However, the marked boxes are identified starting
from the highest level. This means, the Insert procedure needs the marked boxes in the
reverse order of its generation. An obvious strategy is to push the marked boxes in a stack
as and when they are marked in the Mark procedure. We may pop from the stack as many
marked boxes as needed for insertion and then insert x next to each of the popped boxes.

The deletion is even simpler. To delete a key x from S, simply mark the Skip List with
respect to x. Note that if x is in Li, then it will be found next to the marked box in Li.
Hence, we can use the horizontal pointers in the marked boxes to delete x from each level
where x is present. If the deletion creates one or more empty levels, we ignore all of them
and retain only one level corresponding to the empty set. In other words, the number of
levels in the Skip List is reduced in this case. In fact, we may delete an item “on the fly”
during the execution of the Mark procedure itself. As the details are simple we omit pseudo
codes for these operations.

13.6 Analysis of Dictionary Operations

It is easy to see that the cost of Search, Insert and Delete operations are dominated by
the cost of Mark procedure. Hence we shall analyze only the Mark procedure. The Mark
procedure starts at the ‘r’th level and proceeds like a downward walk on a staircase and
ends at level 0. The complexity of Mark procedure is clearly proportional to the number
of edges it traversed. It is advantageous to view the same path as if it is built from level
0 to level r. In other words, we analyze the building of the path in a direction opposite to
the direction in which it is actually built by the procedure. Such an analysis is known as
backward analysis.
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Henceforth let P denote the path from level 0 to level r traversed by Mark(x) for the
given fixed x. The path P will have several vertical edges and horizontal edges. (Note that
at every box either P moves vertically above or moves horizontally to the left). Clearly, P
has r vertical edges. To estimate number of horizontal edges, we need the following lemmas.

LEMMA 13.6 Let the box b containing k at level i be marked by Mark(x). Let a box w
containing k be present at level i + 1. Then, w is also marked.

Proof Since b is marked, from (13.11), we get that there is no value between k and x in
level i. This fact holds good for Li+1 too because Si+1 ⊆ Si. Hence the lemma.

LEMMA 13.7 Let the box b containing k at level i be marked by Mark(x). Let k �∈ Li+1.
Let u be the first box to the left of b in Li having a “vertical neighbor” w. Then w is marked.

Proof Let w.key = u.key = y. Since b is marked, k satisfies condition (13.11). Since u
is the first node in the left of b having a vertical neighbor, none of the keys with values in
between y and x will be in Li+1. Also, k �∈ Li+1 according to our assumption in the lemma.
Thus y is the element in Li+1 that is just less than x. That is, y satisfies the condition
(13.11) at level i + 1. Hence the w at level i + 1 will be marked.

Lemmas (13.6) and (13.7) characterize the segment of P between two successive marked
boxes. This allows us to give an incremental description of P in the following way.

P starts from the marked box at level 0. It proceeds vertically as far as possible (lemma
13.6) and when it cannot proceed vertically it proceeds horizontally. At the “first” oppor-
tunity to move vertically, it does so (lemma 13.7), and continues its vertical journey. Since
for any box a vertical neighbor exists only with a probability p, we see that P proceeds
from the current box vertically with probability p and horizontally with probability (1−p).

Hence, the number of horizontal edges of P in level i is a geometric random variable,
say, Yi, with parameter (1 − p). Since the number of vertical edges in P is exactly r, we
conclude,

THEOREM 13.13 The number of edges traversed by Mark(x) for any fixed x is given
by | P |= r + (Y0 + Y1 + Y2 + · · · + Yr−1) where Yi is a geometric random variable with
parameters 1 − p and r is the random variable denoting the number of levels in the Skip
List.

Our next mission is to obtain a high confidence bound for the size of P . As we have
already derived high confidence bound for r, let focus on the sum Hr = Y0 +Y1 + · · ·+Yr−1

for a while. Since r is a random variable Hr is not a deterministic sum of random variables
but a random sum of random variables.

Hence we cannot directly apply theorem (13.6) and the bounds for negative binomial
distributions.

Let X be the event of the random variable r taking a value less than or equal to 4 log n.
Note that P (X) < 1

n3 by (13.10).
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From the law of total probability, Boole’s inequality and equation (13.10) we get,

Pr(Hr > 16 logn) = Pr([Hr > 16 logn] ∩ X) + Pr([Hr > 16 logn] ∩ X)
= Pr([Hr > 16 logn] ∩ r ≤ 4 log n) + Pr([Hr > 16 logn] ∩ X)

≤
4 log n∑

k=0

Pr(Hk > 16 logn) + Pr(X)

≤ (1 + 4 log n)Pr(H4 log n > 16 logn) +
1
n3

Now Pr(H4 log n > 16 logn) can be computed in a manner identical to the one we carried
out in the space complexity analysis. Notice that H4 log n is a deterministic sum of geometric
random variables. Hence we can apply theorem (13.10) and theorem (13.9) to derive a high
confidence bound. Specifically, by theorem (13.10),

Pr(H4 log n > 16 logn) = Pr(X < 4 log n),

where X is a binomial random variable with parameters 16 logn and p. Choosing p = 1/2
allows us to set µ = 8 logn, k = 4 logn and replace n by 16 logn in the first inequality of
theorem (13.9). Putting all these together we obtain,

Pr(H4 log n > 16 logn) = Pr(X < 4 log n)

≤
(

8 log n

4 log n

)4 log n (
8 log n

12 logn

)12 log n

=
(

2 · 23

33

)4 log n

=
(

16
27

)4 log n

<

(
1
8

)log n

=
1
n3

Therefore

Pr(Hr > 16 logn) < (1 + 4 log n)
(

1
n3

)
+

1
n3

<
1
n2

if n ≥ 32

This completes the derivation of a high confidence bound for Hr. From this, we can easily
obtain a bound for expected value of Hr. We use theorem ( 13.3) and write the expression
for E(Hr) as

E(Hr) =
16 log n∑

i=1

Pr(Hr ≥ i) +
∑

i>16 log n

Pr(Hr ≥ i).

The first sum is bounded above by 16 logn as each probability value is less than 1 and by
the high confidence bound that we have established just now, we see that the second sum
is dominated by

∑∞
i=1 1/i2 which is a constant. Thus we obtain,
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E(Hr) ≤ 16 logn + c = O(log n).

Since P = r + Hr we easily get that E(| P |) = O(log n) and | P |= O(log n) with
probability greater than 1 − O( 1

n2 ). Observe that we have analyzed Mark(x) for a given
fixed x. To show that the high confidence bound for any x, we need to proceed little further.
Note that there are only n + 1 distinct paths possible with respect to the set {−∞ =
k0, k1, ..., kn, kn+1 = +∞}, each corresponding to the x lying in the internal [ki, ki+1), i =
0, 1, ..., n.

Therefore, for any x, Mark(x) walks along a path P satisfying E(| P |) = O(log n) and
| P |= O(log n) with probability greater than 1 − O( 1

n ).
Summarizing,

THEOREM 13.14 The Dictionary operations Insert, Delete, and Search take O(log n)
expected time when implemented using Skip Lists. Moreover, the running time for Dictio-
nary operations in a Skip List is O(log n) with high probability.

13.7 Randomized Binary Search Trees

A Binary Search Tree (BST) for a set S of keys is a binary tree satisfying the following
properties.

(a) Each node has exactly one key of S. We use the notation v.key to denote the
key stored at node v.

(b) For all node v and for all nodes u in the left subtree of v and for all nodes w in
the right subtree of v, the keys stored in them satisfy the so called search tree
property:

u.key < v.key < w.key

The complexity of the dictionary operations are bounded by the height of the binary
search tree. Hence, ways and means were explored for controlling the height of the tree
during the course of execution. Several clever balancing schemes were discovered with
varying degrees of complexities. In general, the implementation of balancing schemes are
tedious and we may have to perform a number of rotations which are complicated operations.
Another line of research explored the potential of possible randomness in the input data.
The idea was to completely avoid balancing schemes and hope to have ‘short ’ trees due to
randomness in input. When only random insertion are done, we obtain so called Randomly
Built Binary Tree (RBBT). RBBTs have been shown to have O(log n) expected height.

What is the meaning of random insertion? Suppose we have already inserted the values
a1, a2, a3, · · · , ak−1. These values, when considered in sorted order, define k intervals on
the real line and the new value to be inserted, say x, is equally likely to be in any of the k
intervals.

The first drawback of RBBT is that this assumption may not be valid in practice and
when this assumption is not satisfied, the resulting tree structure could be highly skewed
and the complexity of search as well as insertion could be as high as O(n). The second
major drawback is when deletion is also done on these structures, there is a tremendous
degradation in the performance. There is no theoretical results available and extensive
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empirical studies show that the height of an RBBT could grow to O(
√

n) when we have
arbitrary mix of insertion and deletion, even if the randomness assumption is satisfied for
inserting elements. Thus, we did not have a satisfactory solution for nearly three decades.

In short, the randomness was not preserved by the deletion operation and randomness
preserving binary tree structures for the dictionary operations was one of the outstanding
open problems, until an elegant affirmative answer is provided by Martinez and Roura in
their landmark paper [3].

In this section, we shall briefly discuss about structure proposed by Martinez and Roura.

DEFINITION 13.15 [Randomized Binary Search Trees] Let T be a binary search tree
of size n. If n = 0, then T = NULL and it is a random binary search tree. If n > 0, T is
a random binary search tree iff both its left subtree L and right subtree R are independent
random binary search trees and

Pr{Size(L) = i|Size(T ) = n} =
1
n

, 0 ≤ i ≤ n.

The above definition implies that every key has the same probability of 1
n for becoming

the root of the tree. It is easy to prove that the expected height of a RBST with n nodes is
O(log n). The RBSTs possess a number of interesting structural properties and the classic
book by Mahmoud [2] discusses them in detail. In view of the above fact, it is enough if
we prove that when insert or delete operation is performed on a RBST, the resulting tree
is also an RBST.

13.7.1 Insertion in RBST

When a key x is inserted in a tree T of size n, we obtain a tree T ′ of size n + 1. For T ′,
as we observed earlier, x should be in the root with probability 1

n+1 . This is our starting
point.

Algorithm Insert(x, T)
- L is the left subtree of the root
- R is the right subtree of the root
1. n = size(T);
2. r = random(0, n);
3. If (r = n) then

Insert_at_root(x, T);
4. If (x < key at root of T) then

Insert(x, L);
Else

Insert(x, R);

To insert x as a root of the resulting tree, we first split the current tree into two trees
labeled T< and T>, where T< contains all the keys in T that are smaller than x and T>

contains all the keys in T that are larger than x. The output tree T ′ is constructed by
placing x at the root and attaching T< as its left subtree and T> as its right subtree. The
algorithm for splitting a tree T into T< and T> with respect to a value x is similar to
the partitioning algorithm done in quicksort. Specifically, the algorithm split(x,T) works as
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follows. If T is empty , nothing needs to be done; both T< and T> are empty. When T
is non-empty we compare x with Root(T ).key. If x < Root(T ).key, then root of T as well
as the right subtree of T belong to T>. To compute T< and the remaining part of T> we
recursively call split(x, L), where L is the left subtree for the root of T . If x > Root(T ).key,
T< is built first and recursion proceeds with split(x, R). The details are left as easy exercise.

We shall first prove that T< and T> are independent Random Binary Search Trees.
Formally,

THEOREM 13.15 Let T< and T> be the BSTs produced by split(x, T ). If T is a random
BST containing the set of keys S, then T< and T> are RBBTs containing the keys S< =
{y ∈ S | y < x} and S> = {y ∈ S | y > x}, respectively.

Proof Let size(T ) = n > 0, x > Root(T ).key, we will show that for any z ∈ S<, the
probability that z is the root of T< is 1/m where m = size(T<). In fact,

Pr( z is root of T< | root of T is less than x)

=
Pr( z is root of T< and root of T is less than x)

Pr(root of T is less than x)

=
1/n

m/n
=

1
m

.

The independence of T< and T> follows from the independence of L and R of T and by
induction.

We are now ready to prove that randomness is preserved by insertion. Specifically,

THEOREM 13.16 Let T be a RBST for the set of keys S and x /∈ S, and assume that
insert(s, T ) produces a tree, say T ′ for S ∪ {x}. Then, T ′ is a RBST.

Proof A key y ∈ S will be at the root of T ′ iff

1) y is at root of T .
2) x is not inserted at the root of T ′

As 1) and 2) are independent events with probability 1
n and n

n+1 , respectively, it follows
that Prob(y is at root of T ′) = 1

n · n
n+1 = 1

n+1 . The key x can be at the root of T ′ only when
insert(x, T ) invokes insert-at-root(x, T ) and this happens with probability 1

n+1 . Thus, any
key in S ∪ {x} has the probability of 1

n+1 for becoming the root of T ′. The independence
of left and right subtrees of T ′ follows from independence of left and right subtrees of T ,
induction, and the previous theorem.

13.7.2 Deletion in RBST

Suppose x ∈ T and let Tx denote the subtree of T rooted at x. Assume that L and R
are the left and right subtrees of Tx. To delete x, we build a new BST T ′

x = Join(L, R)
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containing the keys in L and R and replace Tx by T ′
x. Since pseudocode for deletion is easy

to write, we omit the details.

We shall take a closer look at the details of the Join routine. We need couple of more
notations to describe the procedure Join. Let Ll and Lr denote the left and right subtrees
of L and Rl and Rr denote the left and right subtrees of R, respectively. Let a denote the
root of L and b denote the root of R. We select either a or b to serve as the root of T ′

x with
appropriate probabilities. Specifically, the probability for a becoming the root of T ′

x is m
m+n

and for b it is n
n+m where m = size(L) and n = size(R).

If a is chosen as the root, the its left subtree Ll is not modified while its right subtree
Lr is replaced with Join(Lr, R). If b is chosen as the root, then its right subtree Rr is left
intact but its left subtree Rl is replaced with Join(L, Rl). The join of an empty tree with
another tree T is T it self and this is the condition used to terminate the recursion.

Algorithm Join(L,R)
-- L and R are RBSTs with roots a and b and size m and n respectively.
-- All keys in L are strictly smaller than all keys in R.
-- $L_l$ and $L_r$ respectively denote the left and right subtree of L.
-- $R_l$ and $R_r$ are similarly defined for R.

1. If ( L is NULL) return R.
2. If ( R is NULL) return L.
3. Generate a random integer i in the range [0, n+m-1].
4. If ( i < m ) {* the probability for this event is m/(n+m).*}

L_r = Join(L_l,R);
return L;

else {* the probability for this event is n/(n+m).*}
R_l = Join(L,R_l);
return R;

It remains to show that Join of two RBSTs produces RBST and deletion preserves ran-
domness in RBST.

THEOREM 13.17 The Algorithm Join(L,R) produces a RBST under the conditions
stated in the algorithm.

Proof We show that any key has the probability of 1/(n + m) for becoming the root
of the tree output by Join(L,R). Let x be a key in L. Note that x will be at the root of
Join(L,R) iff

• x was at the root of L before the Join operation, and,
• The root of L is selected to serve as the root of the output tree during the Join

operation.

The probability for the first event is 1/m and the second event occurs with probability
m/(n+m). As these events are independent, it follows that the probability of x at the root
of the output tree is 1

m · m
n+m = 1

n+m . A similar reasoning holds good for the keys in R.
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Finally,

THEOREM 13.18 If T is a RBST for a set K of keys, then Delete(x,T) outputs a RBST
for K − {x}.

Proof We sketch only the chance counting argument. The independence of the subtrees
follows from the properties of Join operation and induction. Let T ′ = Delete(x, T ). Assume
that x ∈ K and size of K is n. We have to prove that for any y ∈ K, y �= x, the probability
for y in root of T ′ is 1/(n − 1). Now, y will be at the root of T ′ iff either x was at the
root of T and its deletion from T brought y to the root of T ′ or y was at the root of T (so
that deletion of x from T did not dislocate y). The former happens with a probability
1
n · 1

n−1 and the probability of the later is 1
n . As these events are independent, we add the

probabilities to obtain the desired result.

13.8 Bibliographic Remarks

In this chapter we have discussed two randomized data structures for Dictionary ADT.
Skip Lists are introduced by Pugh in 1990 [6]. A large number of implementations of this
structure by a number of people available in the literature, including the one by the inventor
himself. Sedgewick gives an account of the comparison of the performances of Skip Lists
with the performances of other balanced tree structures [10]. See
the implementation of other typical operations such as merge. Pugh argues how Skip Lists
are more efficient in practice than balanced trees with respect to Dictionary operations as
well as several other operations. Pugh has further explored the possibilities of performing
concurrent operations on Skip Lists in [8]. For a more elaborate and deeper analysis of Skip

In his thesis, he has introduced deterministic
skip lists and compared and contrasted the same with a number of other implementations of
Dictionaries. Sandeep Sen [5] provides a crisp analysis of the structural properties of Skip
Lists. Our analysis presented in this chapter is somewhat simpler than Sen’s analysis and
our bounds are derived based on different tail estimates of the random variables involved.

The randomized binary search trees are introduced by Martinez and Roura in their classic
paper [3] which contains many more details than discussed in this chapter. In fact, we would
rate this paper as one of the best written papers in data structures. Seidel and Aragon have
proposed a structure called probabilistic priority queues [11] and it has a comparable
performance. However, the randomness in their structure is achieved through randomly
generated real numbers( called priorities) while the randomness in Martinez and Roura’s
structure is inherent in the tree itself. Besides this being simpler and more elegant, it solves
one of the outstanding open problems in the area of search trees.
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